
Lecture 24

Dynamic Programming: Rod Cutting (contd.), LCS

Source: Introduction to Algorithms, CLRS

When to Use Dynamic Programming?

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

If length of the first cut in optimal cutting is , then i profitn = p[i] + profitn−i

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Overlapping Subproblems: Subproblems have common subsubproblems.

If length of the first cut in optimal cutting is , then i profitn = p[i] + profitn−i

When to Use Dynamic Programming?
DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

Overlapping Subproblems: Subproblems have common subsubproblems.

If length of the first cut in optimal cutting is , then i profitn = p[i] + profitn−i

How to Use Dynamic Programming?

How to Use Dynamic Programming?

Solving a problem using dynamic programming usually takes three steps:

How to Use Dynamic Programming?

• Find the optimal substructure.

Solving a problem using dynamic programming usually takes three steps:

How to Use Dynamic Programming?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

Solving a problem using dynamic programming usually takes three steps:

How to Use Dynamic Programming?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Compute the value of the optimal solution using an array.

Solving a problem using dynamic programming usually takes three steps:

Bottom-Up Dynamic Programming

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

 Bottom-Up-RC :(n, p)

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]
 4. for to i = 1 j − 1

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]
 4. for to i = 1 j − 1

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 is the length of the

first cut of length rod
i

j

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]
 4. for to i = 1 j − 1
 5. Maxprofit[j] = (profit[j], p[i] + profit[j − i])

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 is the length of the

first cut of length rod
i

j

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]
 4. for to i = 1 j − 1
 5. Maxprofit[j] = (profit[j], p[i] + profit[j − i])
 6. return profit[n]

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 is the length of the

first cut of length rod
i

j

 Bottom-Up-RC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. for to j = 2 n
 3. profit[j] = p[j]
 4. for to i = 1 j − 1
 5. Maxprofit[j] = (profit[j], p[i] + profit[j − i])
 6. return profit[n]

Bottom-Up Dynamic Programming
Note: Recursive dynamic programming is called top-down DP.1)

Time-Complexity: due to loops of line 2 and 4.O(n2)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)

Computing the maximum profit

obtainable from length rodj

 is the length of the

first cut of length rod
i

j

Constructing the Optimal Solution

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n

What is the length of the first cut in an length rod?n

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n

What is the length of the first cut in an length rod?n .i1

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − i1

i1

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − i1

What is the length of the first cut in an length rod?n − i1

i1

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − i1

What is the length of the first cut in an length rod?n − i1 .i2

i1

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − (i1 + i2)

i1 i2

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − (i1 + i2)

What is the length of the first cut in an length rod?n − (i1 + i2)

i1 i2

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

n − (i1 + i2)

What is the length of the first cut in an length rod?n − (i1 + i2) .i3

i1 i2

Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

i1 i2 i3 … ik

Optimal cutting of an length rod.n

Constructing the Optimal Solution

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 SolutionRC :(n, p)

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i
 10. return profit[n]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i
 10. return profit[n]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 PrintRC :(n, sol)

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i
 10. return profit[n]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 PrintRC :(n, sol)
 1. while n > 0

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i
 10. return profit[n]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 PrintRC :(n, sol)
 1. while n > 0
 2. print sol[n]

 SolutionRC :(n, p)
 1. profit[1 : n] = {p[1],0,…,0}
 2. sol[1 : n] = {1,0,…,0}
 3. for to j = 2 n
 4. profit[j] = p[j]
 5. sol[j] = j
 6. for to i = 1 j − 1
 7. if profit[j] < p[i] + profit[j − i]
 8. profit[j] = p[i] + profit[j − i]
 9. sol[j] = i
 10. return profit[n]

Constructing the Optimal Solution
Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

 is the length of the first cut in

an optimal cutting of length rod.

sol[j]
j

 PrintRC :(n, sol)
 1. while n > 0
 2. print sol[n]
 3. n = n − sol[n]

Subsequence

Subsequence

Defn: A subsequence of a given sequence is just the given sequence with or more elements0

Subsequence

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example:

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequence of are : “mcheco”S

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequence of are : “mcheco”, “m”S

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequence of are : “mcheco”, “m”, “iaeo”S

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequence of are : “mcheco”, “m”, “iaeo”, “michaelscott”S

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequences of are : “mcheco”, “m”, “iaeo”, “michaelscott”, “”.S

Defn: A subsequence of a given sequence is just the given sequence with or more elements0
dropped.

Longest Common Subsequence

Longest Common Subsequence

LCS:

Longest Common Subsequence

LCS:

Input: Two sequences and .X Y

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Example: ”iitjodhpur”, “iitindore”X = Y =

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Example: ”iitjodhpur”, “iitindore”X = Y =

Some common subsequences of and are: “iit”, “dr”, “tor”.X Y

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Example: ”iitjodhpur”, “iitindore”X = Y =

Some common subsequences of and are: “iit”, “dr”, “tor”.X Y

Some longest common subsequences of and are: “iitor”, “iitdr”.X Y

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Application of LCS:

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Application of LCS:

• LCS of two sequences or strings is a measure of how similar they are.

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Application of LCS:

• LCS of two sequences or strings is a measure of how similar they are.

• Used to find similarity of DNAs which can be seen as strings of “A”, “C”, “G”, and “T”

Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences and .X Y

Application of LCS:

• LCS of two sequences or strings is a measure of how similar they are.

characters which represent nucleotides.

• Used to find similarity of DNAs which can be seen as strings of “A”, “C”, “G”, and “T”

Brute Force for LCS

Brute Force for LCS

 BruteForceLCS :(X, Y)

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0
 2. for every subsequence of x X

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0
 2. for every subsequence of x X
 3. if is a subsequence of x Y

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0
 2. for every subsequence of x X
 3. if is a subsequence of x Y
 4. Maxlcs = (lcs, |x |)

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0
 2. for every subsequence of x X
 3. if is a subsequence of x Y
 4. Maxlcs = (lcs, |x |)
 5. return lcs

Brute Force for LCS

 BruteForceLCS :(X, Y)
 1. lcs = 0
 2. for every subsequence of x X
 3. if is a subsequence of x Y
 4. Maxlcs = (lcs, |x |)
 5. return lcs

Generating all the subsequences takes time.O(2|x|)

Finding Optimal Substructure in LCS

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =
Ending characters are same.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =
Ending characters are same.LCS (X, Y) =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =
Ending characters are same.LCS (X, Y) = __ __ __ __ __……

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __……

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __……

What should be the last character in LCS ?(X, Y)

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __……

What should be the last character in LCS ?(X, Y)
“m”, because if not, we can append “m” at the

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __……

What should be the last character in LCS ?(X, Y)
“m”, because if not, we can append “m” at the
end of the LCS and get a bigger LCS.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __…… m

What should be the last character in LCS ?(X, Y)
“m”, because if not, we can append “m” at the
end of the LCS and get a bigger LCS.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __…… m

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __…… m

What should be the remaining LCS ?(X, Y)

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 V i s a k h a p a t n a mY =

LCS (X, Y) = __ __ __ __ __…… m

What should be the remaining LCS ?(X, Y)
Intuition says it should be LCS of “Thiruvananthapuram” and “Visakhapatnam”.

Finding Optimal Substructure in LCS

Finding Optimal Substructure in LCS

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

Finding Optimal Substructure in LCS

Claim: Let and be two sequences such that . Then, X = x1x2…xm Y = y1y2…yn xm = yn

LCS will be an LCS of and .Z = (x1x2…xm−1, y1y2…yn−1) + xm X Y

Finding Optimal Substructure in LCS

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =
Ending characters are different.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

Observation: LCS of and cannot end both “m” and “r”:X Y

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

• If it doesn’t end with “m”, then LCS of , will be:  

 LCS of “Thiruvananthapura” and “Muzaffarnagar”.

X Y

Observation: LCS of and cannot end both “m” and “r”:X Y

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

• If it doesn’t end with “m”, then LCS of , will be:  

 LCS of “Thiruvananthapura” and “Muzaffarnagar”.

X Y

Observation: LCS of and cannot end both “m” and “r”:X Y

LCS of “Thiruvananthapuram” and “Muzaffarnagar”.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

• If it doesn’t end with “m”, then LCS of , will be:  

 LCS of “Thiruvananthapura” and “Muzaffarnagar”.

X Y

• If it doesn’t end with “r”, then LCS of , will be: 

 LCS of “Thiruvananthapuram” and “Muzaffarnaga”.

X Y

Observation: LCS of and cannot end both “m” and “r”:X Y

LCS of “Thiruvananthapuram” and “Muzaffarnagar”.

Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

 T h i r u v a n a n t h a p u r a mX =

 M u z a f f a r n a g a rY =

• If it doesn’t end with “m”, then LCS of , will be:  

 LCS of “Thiruvananthapura” and “Muzaffarnagar”.

X Y

• If it doesn’t end with “r”, then LCS of , will be: 

 LCS of “Thiruvananthapuram” and “Muzaffarnaga”.

X Y

Observation: LCS of and cannot end both “m” and “r”:X Y

LCS of “Thiruvananthapuram” and “Muzaffarnagar”.

 LCS of “Thiruvananthapuram” and “Muzaffarnagar ”.

Finding Optimal Substructure in LCS

Finding Optimal Substructure in LCS

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

Finding Optimal Substructure in LCS

Claim: Let and be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS and LCS will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)

