Lecture 24

Dynamic Programming: Rod Cutting (contd.), LCS

Source: Introduction to Algorithms, CLRS
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DP is typically used in optimization problems with the following two properties:

Optimal Substructure: Optimal solution to the problem contains optimal solutions to
subproblems.

If length of the first cut in optimal cutting is i, then profit, = pli] + profit,_;

Overlapping Subproblems: Subproblems have common subsubproblems.
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How to Use Dynamic Programming?

Solving a problem using dynamic programming usually takes three steps:
® Find the optimal substructure.
® Recursively define the value of optimal solution.

® Compute the value of the optimal solution using an array.
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Note: 1) Recursive dynamic programming is called top-down DP.

2) Iterative DP where we start by solving smaller subproblems “tirst” is called bottom-up DP.
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Bottom-Up Dynamic Programming

Note: 1) Recursive dynamic programming is called top-down DP.

2) Iterative DP where we start by solving smaller subproblems “tirst” is called bottom-up DP.

Bottom-Up-RC(7, p):
profit|l : n] = {p[1],0,...,0} Computing the maximum profit

forj=2ton «————— | obtainable from j length rod

profit j] = plJ]

1

2

3

4. fori=1toj— 1 < [ is the length of the
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Bottom-Up Dynamic Programming

Note: 1) Recursive dynamic programming is called top-down DP.

2) Iterative DP where we start by solving smaller subproblems “tirst” is called bottom-up DP.

Bottom-Up-RC(7, p):

1. profit]l : n] = {p[1],0,...,0} Computing the maximum profit
2. forj=2ton / obtainable from j length rod
3. profitljl = plj )
4. fori=1toj— 1 < 1 is the length of the

. . , L first cut of j length rod
5 profit[ j] = Max(profit[j], pli] + profit]j — i])
6. return profit[n]

Time-Complexity: O(n°) due to loops of line 2 and 4.
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Constructing the Optimal Solution

How to get optimal cutting not just maximum profit?

Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

m-n

Optimal cutting of an n length rod.
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Constructing the Optimal Solution

Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

fori=1toj—1
if profit|j] < pli] + profit|j — i]
profit[ j]1 = plil + profit[j — i
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Constructing the Optimal Solution

Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

SolutionRC(#, p): sol[ j] is the length of the first cut in
1. profit]l : n] = {p[1],0,...,0} an optimal cutting of j length rod.
2. solll :n]=1{1,0,...,0} /

3. forj=2ton

. profit|j] = plJ] PrintRC(n, sol):

5.  solljl = 1. whilen > 0

6. fori=1toj—1 2. print sol[n]

7. if profit|j] < pli] + profit|j — i]

8. profit[ j]1 = plil + profit[j — i

. sol[j] =i

10. return profit|n]



Constructing the Optimal Solution

Idea: Store the actual choices, i.e., length of the first cut, in a separate array.

SolutionRC(7, p): sol[ j] is the length of the first cut in
1. profit]l : n] = {p[1],0,...,0} an optimal cutting of j length rod.
2. solll :n]=1{1,0,...,0} /

3. forj=2ton

4. profit[j] = plJ] PrintRC(7n, sol):

5. solljl =] 1. whilen >0

6. fori=1toj—1 2. print sol[n]

7. if profit| j] < pli] + profit[j — i] 3. n=n—sol[n]
8. profit[j] = plil + profit[j — il

9. sollj] =i

10. return profit|n]
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Subsequence

Defn: A subsequence of a given sequence is just the given sequence with 0 or more elements

dropped.

Example: Let $ = "michaelscott” be a sequence.

17 1 17 11 17 1 I 11 117

Some subsequences of § are : “mcheco”, “m”, “iaeo”, “michaelscott”, "".
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LCS:

Input: Two sequences X and Y.

Output: Length ot the longest common subsequence.

Example: X = "iitjodhpur”, ¥ = "iitindore”

1))

Some common subsequences ot X and Y are: "iit”, “dr”, "tor”.

Some longest common subsequences of X and Y are: “iitor”, “iitdr”.
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Longest Common Subsequence

LCS:

Input: Two sequences X and Y.

Output: Length ot the longest common subsequence.

Application of LCS:
® | CS of two sequences or strings is a measure of how similar they are.

® Used to find similarity of DNAs which can be seen as strings of “A”, “C"”, "G", and “T"

characters which represent nucleotides.
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Brute Force for LCS

BruteForceLCS(X, Y):

1. les=0

for every subsequence x of X — Generating all the subsequences takes O(2|x|) time.

2

3 if x is a subsequence of Y
4. lcs = Max(lcs, [x])
5

return lcs
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Finding Optimal Substructure in LCS

Let’s try to find LCS of X = “Thiruvananthapuram” and Y = "Visakhapatnam”.

X = Thiruvananthapura)X
Y = Visakhapatna)(

LICS(X,Y) = . m

What should be the remaining LCS(X, Y)?
Intuition says it should be LCS of “Thiruvananthapura){” and “Visakhapatna}{”.
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Finding Optimal Substructure in LCS

Claim: Let X = xx,...x, and Y = y,y,...y, be two sequences such thatx, =y, . Then,

/Z = LCS(xx5...%, _{, V1 Vs...Y,_1) + X, will be an LCS of X and Y.
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Let’s try to tind LCS of X = “Thiruvananthapuram” and Y = “Muzaftarnagar”.

X = Thiruvananthapuram

Y = Muzatffarnagar

Observation: LCS of X and Y cannot end both “m"” and “r":
® |f it doesn't end with “m”, then LCS of X, Y will be:

LCS of “Thiruvananthapura}” and “Muzaffarnagar”.

® |f it doesn't end with “r"”, then LCS of X, Y will be:
LCS of “Thiruvananthapuram” and "MuzaftarnagaX”.
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Finding Optimal Substructure in LCS

Claim: Let X = x;x,...x,_ and Y = y,y,...y, be sequences such that x, # vy, . Then, at least

one out of LCS(xx,...X, 1, V{V5...V,) and LCS(x;x,...x, .,V V,...y, 1) will be an LCS(X, Y).



