
Lecture 24

Dynamic Programming: Rod Cutting (contd.), LCS

Source: Introduction to Algorithms, CLRS
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How to Use Dynamic Programming?

• Find the optimal substructure.

• Recursively define the value of optimal solution.

• Compute the value of the optimal solution using an array.

Solving a problem using dynamic programming usually takes three steps:
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 3.        profit[ j] = p[ j]
 4.        for  to i = 1 j − 1
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Bottom-Up Dynamic Programming
Note:  Recursive dynamic programming is called top-down DP.1)

Time-Complexity:  due to loops of line 2 and 4.O(n2)

 Iterative DP where we start by solving smaller subproblems “first” is called bottom-up DP.2)
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How to get optimal cutting not just maximum profit?
Repeatedly ask what is the length of the first cut in an optimal cutting of the remaining piece.

i1 i2 i3 … ik

Optimal cutting of an  length rod.n
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Subsequence

Example: Let ”michaelscott” be a sequence.S =

Some subsequences of  are : “mcheco”, “m”, “iaeo”, “michaelscott”, “”.S

Defn: A subsequence of a given sequence is just the given sequence with  or more elements0
dropped.
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Longest Common Subsequence

LCS:

Output: Length of the longest common subsequence.

Input: Two sequences  and .X Y

Application of LCS: 

• LCS of two sequences or strings is a measure of how similar they are.

characters which represent nucleotides.

• Used to find similarity of DNAs which can be seen as strings of “A”, “C”, “G”, and “T”  
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Brute Force for LCS

 BruteForceLCS :(X, Y)
 1.    lcs = 0
 2.    for every subsequence  of x X
 3.        if  is a subsequence of  x Y
 4.            Maxlcs = (lcs, |x | )
 5.    return   lcs

Generating all the subsequences takes  time.O(2|x|)
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Finding Optimal Substructure in LCS

Let’s try to find LCS of “Thiruvananthapuram” and “Visakhapatnam”.X = Y =

      T h i r u v a n a n t h a p u r a mX =

      V i s a k h a p a t n a mY =

LCS    (X, Y) = __ __ __  __ __…… m

What should be the remaining LCS ?(X, Y)
Intuition says it should be LCS of “Thiruvananthapuram” and “Visakhapatnam”.
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Let’s try to find LCS of “Thiruvananthapuram” and “Muzaffarnagar”.X = Y =

      T h i r u v a n a n t h a p u r a mX =

      M u z a f f a r n a g a rY =
Ending characters are different.
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• If it doesn’t end with “r”, then LCS of ,  will be: 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X Y

Observation: LCS of  and  cannot end both “m” and “r”:X Y
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Claim: Let  and  be sequences such that . Then, at leastX = x1x2…xm Y = y1y2…yn xm ≠ yn

one out of LCS  and LCS  will be an LCS .(x1x2…xm−1, y1y2…yn) (x1x2…xm, y1y2…yn−1) (X, Y)


